On Evaluation of 6D Object Pose Estimation
نویسندگان
چکیده
A pose of a rigid object has 6 degrees of freedom and its full knowledge is required in many robotic and scene understanding applications. Evaluation of 6D object pose estimates is not straightforward. Object pose may be ambiguous due to object symmetries and occlusions, i.e. there can be multiple object poses that are indistinguishable in the given image and should be therefore treated as equivalent. The paper defines 6D object pose estimation problems, proposes an evaluation methodology and introduces three new pose error functions that deal with pose ambiguity. The new error functions are compared with functions commonly used in the literature and shown to remove certain types of non-intuitive outcomes. Evaluation tools are provided at: https : //github.com/thodan/obj pose eval
منابع مشابه
6D Object Detection and Next-Best-View Prediction in the Crowd
6D object detection and pose estimation in the crowd (scenes with multiple object instances, severe foreground occlusions and background distractors), has become an important problem in many rapidly evolving technological areas such as robotics and augmented reality. Single shotbased 6D pose estimators with manually designed features are still unable to tackle the above challenges, motivating t...
متن کاملPoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
Estimating the 6D pose of known objects is important for robots to interact with the real world. The problem is challenging due to the variety of objects as well as the complexity of a scene caused by clutter and occlusions between objects. In this work, we introduce PoseCNN, a new Convolutional Neural Network for 6D object pose estimation. PoseCNN estimates the 3D translation of an object by l...
متن کاملDeep-6DPose: Recovering 6D Object Pose from a Single RGB Image
Detecting objects and their 6D poses from only RGB images is an important task for many robotic applications. While deep learning methods have made significant progress in visual object detection and segmentation, the object pose estimation task is still challenging. In this paper, we introduce an end-toend deep learning framework, named Deep-6DPose, that jointly detects, segments, and most imp...
متن کاملDeepIM: Deep Iterative Matching for 6D Pose Estimation
Estimating the 6D pose of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an object against the input image can produce accurate results. In this work, we propose a novel deep neural network for 6D pose matching named DeepIM. Giv...
متن کاملRecovering 6D Object Pose: Multi-modal Analyses on Challenges
A large number of studies analyse object detection and pose estimation at visual level in 2D, discussing the effects of challenges such as occlusion, clutter, texture, etc., on the performances of the methods, which work in the context of RGB modality. Interpreting the depth data, the study in this paper presents thorough multi-modal analyses. It discusses the above-mentioned challenges for ful...
متن کامل